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Abstract. We study the elementary excitations of a transversely confined Bose-Einstein condensate in
presence of a weak axial random potential. We determine the localization length (i) in the hydrodynamical
low energy regime, for a domain of linear densities ranging from the Tonks-Girardeau to the transverse
Thomas-Fermi regime, in the case of a white noise potential and (ii) for all the range of energies, in
the “one-dimensional mean field regime”, in the case where the randomness is induced by a series of
randomly placed point-like impurities. We discuss our results in view of recent experiments in elongated
BEC systems.

PACS. 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid
flow – 05.60.Gg Quantum transport

1 Introduction

The rapid developments of coherent atom manipulation
which has recently allowed to study atomic interferom-
etry of Bose-Einstein condensate (BEC) on a chip [1,2]
opens up the prospect of considering a whole set of new
transport phenomena in BEC systems. This can be con-
sidered as a new domain for studying the concepts issued
form mesoscopic physics. As for the clean 2D electronic
devices considered in this latter field, the BECs are gen-
uinely phase coherent. Moreover, whereas interactions are
difficult to model in mesoscopic physics, their effects in
BEC systems are rather well understood and are expected
to lead to a whole body of interesting phenomena: atom
blockade [3], perfect solitonic-like transmission over a bar-
rier [4], non linear resonant transport [5], breakdown and
revival of Bloch oscillations [6], to mention just a few ex-
amples.

Coherent transport phenomena are of special interest
in presence of disorder. Interference effects have then a
prominent role, resulting, in the non interacting case, in
weak or strong localization, as observed in many differ-
ent fields (electronic or atomic physics, acoustics or elec-
tromagnetism). The influence of interaction on this phe-
nomenon are of great interest (see, e.g., the review [7])
and have recently been addressed in the case of repul-
sive two body effective interaction for BEC systems in
references [8,9]. In these latter two references, interac-
tion effects have been shown to lead to genuinely non-
linear phenomena that profoundly alter the usual picture
of Anderson localization.

a e-mail: nicolas.pavloff@u-psud.fr

In the present work, we also consider the influence of
interaction on Anderson localization, but remaining at a
linear level, by studying the propagation of elementary
excitations in a disordered BEC system. These are small
deformations of a static background and they can be — at
leading order — described in a linear framework (neglect-
ing phenomena such as Beliaev damping). Interaction has
nonetheless a prominent effect on the spectrum of elemen-
tary excitations, which is phonon-like at small energy and
becomes similar to the one of non interacting particles at
high energy. The crossover between these two regimes oc-
curs at an energy �ω of order of the chemical potential µ
of the system.

Accordingly, the localization length Lloc of the ele-
mentary excitations (i.e., the typical extend of a local-
ized mode, see Sect. 2 below) is expected to be similar
to the one of phonons at low energy (�ω � µ), and
to the one of non interacting particles at high energy
(�ω � µ) [10]. The localization length of non interacting
particles scales linearly with the energy (at high enough
energy, see, e.g., [11]), whereas phonons in 1D disordered
system have a localization length which diverges as ω−2 at
small ω, as typically observed in models of disordered har-
monic chains [12], in random layered media [13], or in con-
tinuous models with random elastic properties [14]. Hence,
the localization length Lloc of the elementary excitations
has the behavior illustrated in Figure 1, with a minimum
at �ω � µ. The main purpose of the present work is to
explicitly derive this type of behavior within several ap-
proximation schemes and different models of disorder.

The paper is organized as follows. In Section 2 we
briefly present the model and the parameter range in
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Fig. 1. Lloc as a function of the energy �ω of an elementary
excitation in logarithmic scale (µ is the chemical potential of
the system, and Lµ is the value of Lloc when �ω = µ). The
curve has been drawn within the model used in Section 4,
employing formulas (40) and (61). This yields λ2 nimpLloc =

4[(�ω/µ)2 +1]/[
√

(�ω/µ)2 + 1−1] (the meaning of the param-
eters λ and nimp in this formula is explained in Sect. 4).

which we are working, together with the Bogoliubov-
de Gennes equations governing the dynamics of the
elementary excitations. In Section 3 we consider the large
wave-length limit within an hydrodynamical approach.
We consider a Gaussian white noise potential and show
in particular that in this domain, one obtains a ω−2 be-
havior of Lloc. In Section 4 we consider an other type
of disorder (randomly placed delta impurities) and work
within the transfer matrix approach. In this regime we are
able to work for all the range of energies and obtain an
analytic expression for Lloc in the scarce impurities limit.
This expression matches at low energy the one obtained
in Section 3 within the hydrodynamical approach. Very
interesting recent experiments have addressed the issue of
transport in a disordered BEC [15–17] and in Section 5 we
discuss the relevance of our approach for analyzing some
of the experimental results. Finally, some technical points
are given in the appendices. Appendix A is devoted to
the derivation of a formula allowing to determine the den-
sity of state within the “phase formalism” employed in
Section 3. In Appendix B we compute the transmission
coefficient of an elementary excitation of energy �ω over
a single delta-like impurity.

2 The model

In this section we present the basic equations describ-
ing the elementary excitations of a one-dimensional (1D)
Bose-Einstein condensed gas in presence of disorder. The
condensate is formed by atoms of mass m which interact
via a two-body potential characterized by its 3D s-wave
scattering length a > 0. The gas is confined to one di-
mension by a transverse parabolic potential of frequency
ω⊥ and “oscillator length” a⊥ = (�/mω⊥)1/2. There is
no confinement in the axial (x) direction, but disorder is
induced along the axis of the guide through a random po-
tential U(x) whose properties will be specified in the next
sections.

In this section (and also in Sect. 4) we restrict ourselves
to the “1D mean field regime” [18] corresponding to a
density range such that

(a/a⊥)2 � n1D a� 1 , (1)

where n1D denotes a typical order of magnitude of the
1D density n(x, t) of the system. The first of the in-
equalities (1) ensures that the system does not get in the
Tonks-Girardeau limit and the second that the transverse
wave function is the ground state of the linear transverse
Hamiltonian, see, e.g., the discussion in references [18,19].
We address the low density case (Tonks-Girardeau limit)
and the high density case (transverse Thomas-Fermi) in
Section 3.

In the 1D mean field regime, the field operator is a
function Ψ̂(x, t) which can be decomposed in the usual
Bogoliubov way in c-number (the superfluid order param-
eter) plus small terms describing the contribution of the
elementary oscillations (see, e.g., Ref. [20], Chap. 5). For a
stationary condensate, the order parameter is of the form
ψ(x) exp{−iµt/�} where ψ(x) is real, and the Bogoliubov
decomposition reads

Ψ̂(x, t) = e−iµt/�

{
ψ(x)

+
∑

ν

[
uν(x) b̂ν e−iωνt + v∗ν(x) b̂†ν eiωνt

]}
, (2)

where b̂ν and b̂†ν are, respectively, the annihilation and
creation operator of the νth elementary excitation. In the
following, we drop the subscript ν for legibility. The order
parameter verifies the Gross-Pitaevskii equation

− �
2

2m
d2ψ

dx2
+
{
U(x) + g1D ψ

2(x)
}
ψ(x) = µψ(x) , (3)

with g1D = 2�ω⊥a [21–23]. The functions u(x) and v(x)
are solutions of the Bogoliubov-de Gennes equations (see,
e.g., Ref. [20], Chap. 5)

(
H g1D ψ

2

−g1D ψ2 −H

)(
u
v

)
= �ω

(
u
v

)
, (4)

where

H = − �
2

2m
d2

dx2
+ U(x) + 2 g1D ψ2(x) − µ. (5)

In presence of a single elementary excitation of pulsation ω
the density reads n(x, t) = |ψ(x)|2 + δn(x, t) where the
density oscillation is, at leading order:

δn(x, t) = ψ(x)[u(x) + v(x)] e−iωt + c.c., (6)

where “c.c.” stands for “complex conjugate”. In Section 3
we use the notation δn(x) for the quantity ψ(x)[u(x) +
v(x)].

In the absence of potential U , the order parameter is a
constant ψ(x) = n

1/2
0 with µ = g1D n0, the speed of sound
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in the system is c0 = (µ/m)1/2 and the healing length is
ξ = �/(mc0).

Disorder is induced along the axis x of the guide
through the random potential U(x). Denoting Utyp the
typical value of |U(x)|, we work in the limit Utyp � µ.
This regime is easily reached experimentally [15,16] and
is very relevant for our purpose because it corresponds
to a range of parameters where Anderson localization is
not blurred by effects connected to “fragmentation of the
condensate” [24].

In a 1D disordered system the excitations are expected
to be localized around a point with an envelop decreasing
exponentially with the distance to this point. This cor-
responds to functions u, v and δn behaving as exp{±γx}
when |x| → ∞. γ is a function of ω known as the Lyapunov
exponent; it characterizes the localization properties of
the system. Its inverse Lloc = γ−1 is the localization
length [11]. We determine the Lyapunov exponent of the
system in Section 3 in the hydrodynamical regime �ω � µ.

In Section 4 we approach the problem in a different
— but equivalent — manner. The disordered potential is
assumed to be non zero only in a finite region of space,
between x = 0 and L. We consider an elementary ex-
citation of pulsation ω incident on the random poten-
tial. The corresponding transmission coefficient T through
the disordered region is related to the Lyapunov expo-
nent via γ = −(1/2) limL→∞ L−1 lnT [11]. This is sim-
ply connected to the fact that the incident wave function
decreases exponentially — at a rate γ — in the disor-
dered region, and this corresponds finally to a transmis-
sion probability which is (within logarithmic accuracy)
T ∼ exp(−2 γL).

We note here important features of the localization
properties of the elementary excitations. First, equa-
tion (4) admits a zero energy solution for u(x) = −v∗(x) =
ψ(x). Thus, whatever the disordered potential U(x), the
excitation at ω = 0 is delocalized since ψ(x) extends to
infinity. This implies that Lloc diverges as ω → 0. Sec-
ondly, at ω → ∞ the high energy part of the spectrum is
well described by a single particle description obtained by
neglecting the coupling between the positive (u) and nega-
tive (v) frequency components of the excitations (see, e.g.,
Ref. [20], Chap. 12). In this limit one can set v = 0 in equa-
tion (4) and the system is described by the Schrödinger-
like Hamiltonian H (5) which localization length behaves
as Lloc ∝ ω at high energy. Thus, as already anticipated
in the introduction, we expect a behavior of Lloc similar
to what has been drawn in Figure 1.

3 Hydrodynamical approach: �ω � µ

The results obtained in this section are derived within the
1D mean field regime (1). As explained at the end of the
section, they can be easily generalized in the transverse
Thomas-Fermi regime and even in the Tonks-Girardeau
limit.

In the present section we only consider the low fre-
quency excitations (�ω � µ). These involve large wave
lengths (which are of order 2π c0/ω, when ω → 0) and

accordingly, features at small length scale are not rele-
vant in the potential seen by the excitations. In particular,
the ground state order parameter can be evaluated in the
Thomas-Fermi approximation [25] leading to

ψ(x) =

√
µ− U(x)
g1D

. (7)

By reintroducing this ansatz in equation (3), one can eas-
ily show (provided Utyp is small compared to µ) that the
Thomas-Fermi result (7) is valid in the limit ξ � rc,
where rc fixes the length scale of typical variations of U
(for instance this is the correlation length of the random
potential). If besides, one considers the limit ξ � c0/ω,
the density oscillations δn(x) obey the hydrodynamical
equation [26,27]

−ω2δn(x) =
d
dx

(
c2(x)

d
dx
δn(x)

)
, (8)

where c(x) = {[µ− U(x)]/m}1/2 is a local sound velocity.
Disorder is induced along the axis of the guide through

the random potential U(x) which is assumed to have zero
mean. The case 〈U〉 
= 0 can be treated with a trivial ex-
tension of the present approach which is explained at the
end of the section. In the following of this section, U will be
approximated by a Gaussian white noise. The hypothesis
of white noise is only valid if the wave length of the excita-
tions is large compared to the correlation length rc of the
true U (which is not a perfect white noise if we want the
Thomas Fermi approximation (7) to hold). Hence, in the
present section, we make the consistent hypothesis that

ξ � rc � 2 π c0
ω

. (9)

When the inequality (9) is verified, equations (7) and (8)
are both valid and furthermore the approximation of the
random potential by a white noise is sound. In the follow-
ing we thus write

〈U(x)U(0)〉 =
(

�
2

m

)2

D δ(x) . (10)

We now evaluate the localization length corresponding
to equation (8) by means of the phase formalism (see
Ref. [11]). We consider a real solution of (8) and define
the functions α(x) and β(x) by

α(x) =
δn(x)
δn∗ , β(x) = −c

2(x)
c0 ω

dα
dx

. (11)

In (11) the quantity δn∗ is a typical value of δn(x) which
is introduced for dimensional purpose, but plays no role
in the following [since Eq. (8) is linear]. The functions α
and β satisfy the following system of equations:

dα
dx

= − ω

c0

[
1 + η(x)

]
β(x) ,

dβ
dx

=
ω

c0
α(x) . (12)

In the first of equations (12), the term η(x) is equal to
U(x)/[µ−U(x)]. In all the following we assume that Utyp

is much smaller than µ, and we write η(x) � U(x)/µ [28].
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It is convenient to parametrize the functions α and β
in the form

α(x) = r(x) cos θ(x) , β(x) = r(x) sin θ(x). (13)

The functions θ(x) and r(x) describe respectively the
phase and the envelope of the density oscillations δn(x)
[and accordingly of u(x) and of v(x)]. In particular, the
Lyapunov exponent is defined by

γ(ω) = lim
x→∞

〈ln r(x)〉
x

. (14)

It is convenient to introduce the quantity z = α/β be-
cause, owing to the equality

ln r2(x) =
2ω
c0

∫ x

0

z(x′) dx′ + lnβ(0) − ln sin2 θ(x), (15)

and to the fact that the probability density of sin θ (and
thus also that of z = cot θ) becomes stationary (i.e., x
independent) at large x [11], one can write

γ =
ω

c0
lim

x→∞x−1

∫ x

0

〈z(x′)〉dx′ =
ω

c0
〈z〉st , (16)

where 〈z〉st is the mean value of z in the stationary regime.
This quantity is determined as follows. From (12) one sees
that z verifies the following stochastic differential equation

−c0
ω

dz
dx

= 1 + z2 +
U(x)
µ

. (17)

Let P (z;x)dz be the probability that z(x) lies in the in-
terval z, z+dz. From (17) and (10) P verifies the Fokker-
Planck equation (see, e.g., [11,29])

∂P

∂x
=
ω

c0

∂

∂z

[(
1 + z2

)
P +

ωδ

2
∂P

∂z

]
, (18)

where δ = ξ4D/c0. The stationary regime corresponds to
the case where ∂xP = 0. In this case, writing P = Pst(z),
equation (18) yields

(1 + z2)Pst +
ω δ

2
dPst

dz
= Jω, (19)

where Jω is an integration constant. The solution of (19) is

Pst(z) =
2 Jω

ω δ

×
∫ +∞

0

dt exp
{

2
ωδ

[
−(1 + z2)t+ zt2 − t3

3

]}
. (20)

The value of Jω is fixed by the normalization of Pst. One
obtains

J−1
ω =

√
2π
ωδ

∫

R

exp
[
−12 t2 + t6

6ωδ

]
dt . (21)

Simple algebra allows to express the average 〈z〉st =∫
R
z Pst(z) dz under the following form:

〈z〉st = Jω

√
π

2ωδ

∫

R

exp
[
−12 t2 + t6

6ωδ

]
t2 dt. (22)

0 1 2 3 4
           ω δ

−0.5

0.0

0.5

1.0

 γ
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4  D

Fig. 2. γ as a function of ω in rescaled units. The solid line
is the numerical evaluation of γ using formulas (16) and (22).
The dashed lines are the small and large ωδ approximations
[Eqs. (23) and (24)].

We are primarily interested in this section in the small
frequency evaluation of the Lyapunov exponent, because
equation (8) is expected to describe the elementary exci-
tations only in the domain �ω/µ� 1. An expansion of the
integrals (21) and (22) in the limit ωδ → 0 yields, after
reinserting in (16):

γ =
ξ2D

8

(
�ω

µ

)2
[

1 − 15
16

(
ωδ

2

)2

+ · · ·
]

. (23)

Although the high frequency limit is not expected to be
relevant in the hydrodynamical regime, we note for com-
pleteness that when ωδ → ∞ one obtains

γ =
ω

c0

√
3
8π

Γ
(5

6

)( ωδ√
6

)1/3
⎡

⎣1 −
Γ
(

5
6

)

√
π

(√
6

ωδ

)2/3

+

(
2
√
π

3Γ
(

5
6

) −
2[Γ
(

5
6

)
]2

π

)(√
6

ωδ

)4/3

+ · · ·

⎤

⎦ . (24)

The exact value of γ — as determined numerically from
equations (16), (21) and (22) — is represented in Figure 2
(solid line).

The quantity Jω is also of interest for itself, because it
gives informations on the density of states of the excita-
tions. It is show in Appendix A that, if N(ω) denotes the
integrated density of state per unit length, one has

N(ω) =
ω

c0
Jω. (25)

From (21) one gets the following expansions:

N(ω) =
3ω
c0

Γ (5
6 )

(2π)3/2

(
ωδ√

6

)1/3

×

⎡

⎣1 +
Γ
(

5
6

)

√
π

(√
6

ωδ

)2/3

+ · · ·

⎤

⎦ (26)
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when ωδ � 1, and

N(ω) =
ω

π c0

[

1 +
5
32

(
ωδ

2

)2

+ · · ·
]

, (27)

when ωδ � 1. In the relevant regime of low excitation
energies, the leading order in (27) coincides the result in
absence of disorder, where one has a linear dispersion re-
lation ω = c0|q| in the hydrodynamical regime. This con-
firms what could have been already anticipated from the
fact that γ → 0 when ω → 0: the low lying excitations are
poorly affected by the presence of disorder (the relevant
small parameter being ωδ). In particular, there is no trap-
ping of the elementary excitations by the disorder and no
Lifshitz tail in the density of state. This is linked to the
fact that ω = 0 constitutes what is called a “stable gen-
uine boundary of the spectrum” in the book by Lifshits,
Gredeskul and Pastur (see Ref. [11], Sect. 7.3).

The results presented in this section have been ob-
tained for a random potential with zero mean. They are
very easily adapted to the case 〈U〉 
= 0: it suffices to write
U(x) = 〈U〉 + U1(x), and to define µ1 = µ − 〈U〉, c1 =
(µ1/m)1/2, ξ1 = �/mc1, δ1 = ξ41D/c1. Then, all the results
presented from equation (11) to equation (27) remain valid
provided U(x), µ, c0, ξ and δ are replaced by the similar
quantities with subscript “1”, with the coefficient D being
now defined by 〈U1(x)U1(0)〉 = (�2/m)2D δ(x) [instead
of (10)].

The present hydrodynamical approach is very inter-
esting because it has natural extensions out of the 1D
mean field regime defined by equation (1). For high lin-
ear densities, when n1Da� 1, one reaches the “transverse
Thomas-Fermi regime” also named “3D cigar” in refer-
ence [18]. In this regime the system cannot be considered
as truly uni-dimensional. However, the lowest branch of
the spectrum corresponds to excitations that are isotropic
in the transverse direction, and, as shown by Stringari in
reference [30], they can still be described within the hydro-
dynamical approach. In this case, averaging the 3D hydro-
dynamical equation over the transverse direction, one gets
a 1D equation of the form (8) where the local sound veloc-
ity c(x) is now taken to be c(x) = {[(1/2)µ−U(x)]/m}1/2.
So, all the results presented from equation (11) to equa-
tion (27) remain valid provided µ, c0 and ξ and are re-
placed by µ′ = µ/2, c′0 = (µ′/m)1/2 and ξ′ = �/(mc′0).

The low density regime n1Da � (a/a⊥)2
(Tonks-Girardeau) can also be studied within the
hydrodynamical framework (see for instance Ref. [18]). In
this case one has µ = (π �n0)2/2m, c0 = (2µ/m)1/2 and
equation (8) is replaced by

−ω2δn(x) =
d
dx

{
c(x)

d
dx

[
c(x) δn(x)

]}
, (28)

with the local sound velocity being defined by c(x) =
{[(2/m)[µ − U(x)]}1/2. In the present case we define [in-
stead of (11)]

α(x) =
c(x)
c0

δn(x)
δn∗ , β(x) =

c(x)
ω

dα
dx
. (29)

Writing α = r sin θ and β = r cos θ, one obtains:

dr
dx

= 0 ,
dθ
dx

=
ω

c(x)
. (30)

From the second of these equations, in the limit where
1/c(x) = c−1

0 [1 + (1/2)U(x)/µ], one can show that the
phase θ(x) has a Gaussian distribution of the form

Q(θ;x) =
1

√
2πω2xδ/c0

exp
{
−

(θ − θ0 − ωx
c0

)2

2ω2xδ/c0

}
, (31)

with δ = (�2/2mµ)2D/c0.
The first of equations (30) is more interesting. It shows

that the envelope of function α(x) remains exactly con-
stant. Assuming that the localization properties of α(x)
are the same than those of δn(x) [31], this equation points
to the absence of exponential localization in the hydrody-
namical limit of the Tonks-Girardeau regime.

4 Transfer Matrix approach

In this section, we study Anderson localization of the ele-
mentary excitations of a Bose-Einstein condensate with an
other type of disordered potential and in a framework dif-
ferent from the one used in the previous section. Namely,
we study the transmission through a disordered region of
extend L, in the 1D mean field regime (1), by means of a
transfer matrix approach for a disordered potential:

U(x) = gimp

∑

n

δ(x− xn), where gimp = λµ ξ. (32)

U(x) describes a series of static impurities with equal in-
tensity and random positions xn. The peak intensity is
measured by the dimensionless parameter λ. We consider
here the repulsive case λ > 0. The xn’s are uncorrelated
and uniformly distributed with mean density nimp. In this
case 〈U(x)〉 = gimpnimp and 〈U(x1)U(x2)〉 − 〈U(x1)〉 ×
〈U(x2)〉 = (�2/m)2D δ(x1 − x2), with D = nimp(λ/ξ)2.
From what is known in the case of Schrödinger equation,
this type of potential is typical insofar as localization prop-
erties are concerned [11]. Besides, it has recently been pro-
posed to implement a very similar type of random poten-
tial by using two different atomic species in an optical
lattice [32].

The static background is deformed around each im-
purity over a distance which is at most of order ξ. We
consider the regime where this deformation does not ex-
tend to the nearest impurity (nimpξ � 1 [33]). In this
case, the propagation of an elementary excitation in pres-
ence of the disordered potential U(x) can be treated as
a sequence of scatterings over isolated perturbations. Be-
sides — as shown in Appendix B — both the scattering of
an elementary excitation over such a perturbation, and its
propagation between two successive impurities (separated
by a distance �) are, in this regime, described by a 2 × 2
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Fig. 3. Scattering channels used for writing the transfer ma-
trices Tλ and T0(�) of (33). In the case of unperturbed motion
over a length � one has xout − xin = �. In the case of scatter-
ing by a delta peak located at (xin + xout)/2, one should take
ξ � xout − xin � n−1

imp.

transfer matrix, denoted respectively Tλ and T0(�) with
(see, e.g., [34])

Tλ =
(

1/t∗λ −r∗λ/t∗λ
−rλ/tλ 1/tλ

)
, T0(�) =

(
1/t∗0 0
0 1/t0

)
. (33)

rλ and tλ in equation (33) are the transmission and re-
flexion amplitudes of an elementary excitation with en-
ergy �ω across the background deformation induced by a
single delta-like impurity. Their dependence on λ and ω is
determined in Appendix B [Eqs. (57) and (58)]. The scat-
tering states we choose for writing the matrices Tλ and
T0(�) are the one introduced in this Appendix. They are
pictured in Figure 3.

The coefficients uω and vω in Figure 3 are chosen in
order to make the incoming and outgoing channels iden-
tical to these appearing naturally in Appendix B when
considering the scattering of an elementary excitation by
a single impurity. One thus takes

(
uω

vω

)
=

⎛

⎜
⎜
⎝

[
qξ

2
+

ω

c0q
+ i

]2

[
qξ

2
− ω

c0q
+ i

]2

⎞

⎟
⎟
⎠ (34)

where q is defined in equation (56). In the case of scatter-
ing by an impurity, this corresponds indeed to the scat-
tering channels defined by equations (53), (54) and (55).
In the case of free motion over a length �, it is easy to
see that these scattering channels correspond to a matrix
T0(�) such as defined in equation (33) with

t0(�, ω) = ei(q �−2 α), where e−2 i α =
u∗ω
uω

=
v∗ω
vω

. (35)

Then, the scattering by a series ofN delta peaks separated
by distances �1 = x2 − x1, ..., �N−1 = xN − xN−1, is
described by the transfer matrix TN which is the product

TN = Tλ × T0(�N−1) × Tλ...× T0(�1) × Tλ. (36)
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Fig. 4. γ as a function of ω in rescaled units. The plot is drawn
for λ = 1 and ξ nimp = 0.02. The dots are the results of the
numerical simulation and the solid line is the analytical result
from equation (40). The inset displays a blowup of the figure
at low energy.

TN defined in equation (36) is of the general form

TN =
(

1/t∗N −r∗N/t∗N
−rN/tN 1/tN

)
. (37)

Equation (37) is used for computing the reflexion and
transmission amplitudes (rN and tN ) of the elementary
excitation over the potential (32). The transmission prob-
ability over this potential is TN = |tN |2.

As discussed at the end of Section 2, the analogous
of the Lyapunov exponent already computed in Section 3
[Eq. (14)] is here defined as

γ = − lim
N→∞

nimp

N
〈ln |tN |〉 = − lim

N→∞
nimp

2N
〈lnTN 〉. (38)

We calculated γ numerically, by a Monte Carlo averaging
over 50 realizations of the disorder, taking N = 2000 [35].
The result is shown in Figure 4 for λ = 1 and nimp ξ =
0.02. In the present model the lengths �i = xi+1 − xi are
independent, Poisson distributed, random variables with
P (�) = nimp exp{−� nimp}. Thus, for a fraction of lengths
equal to nimp ξ the transfer matrix approach fails because
the distance between two successive impurities is smaller
than ξ [36]. This is the reason why we consider a rather
small value of density of impurities: for the chosen value
nimpξ = 0.02, only 2% of the distances violate the criterion
of applicability of the transfer matrix approach.

As shown in reference [38], in the limit nimp � q, one
can obtain an analytical estimate of γ. From the relation
TN+1 = Tλ × T0(�N ) × TN one gets

〈ln |tN+1|〉 = ln |tλ| + 〈ln |tN |〉

−
〈

ln |1 + rλ r
∗
N

tN
t∗N

t20(�N )|
〉
. (39)

�N is typically of order n−1
imp, and in the limit nimp � q,

one may assume that the phase of t0(�N , ω) given in (35)
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Fig. 5. γ as a function of ω in rescaled units. The plot is
drawn for λ = 0.2 and ξ nimp = 0.03. The dots are the results
of the numerical simulation and the solid line is the analytical
result from equation (40). The dashed line is the approximate
result (41).

is uniformly distributed in [0, 2π]. Then, the last term of
the r.h.s. averages out to zero [37,38]. This yields

γ = −nimp ln |tλ| = −nimp

2
lnTλ, (40)

where we recall that the explicit expression of tλ is given
in equation (57) and Tλ = |tλ|2. Formula (40) corresponds
to the solid line in Figure 4. The agreement with the re-
sult of the numerical simulation is very good, even at low
energy, as shown in the inset of the figure. This is not a
surprise because the breakdown of (40) is expected only
at extremely low energies for the present value nimp: when
q <∼nimp, i.e., �ω/µ � ξ q <∼ 0.02. For larger values of nimp,
the good agreement of equation (40) with the numerical
data is limited to a smaller range of energies, mainly be-
cause the transfer matrix approach fails.

From equation (60), in the limit of small ω and λ� 1
formula (40) yields

γ � λ2

8

(
�ω

µ

)2

nimp . (41)

The precise range of validity of formula (41) in the en-
ergy domain is expected to be ξ nimp � �ω/µ � 1; the
first inequality ensures that (40) is valid and the second
that (60) is applicable. The accuracy of formula (41) is
tested in Figure 5 in the case λ = 0.2 and ξ nimp = 0.03.
As already seen in Figure 4, one notices on this Figure
that the restriction ξ nimp � �ω/µ turns out to be of no
practical importance.

Formula (41) is interesting because it is identical to
the first term of expansion (23) which has been obtained
in Section 3 in a completely different framework, and this
permits to bridge the gap between the hydrodynamical
approach and the present transfer matrix method. As
just mentioned, formula (41) is restricted to small val-
ues of λ, but the approach of Section 3 is similarly lim-
ited to the domain Utyp � µ. Also, equation (23) is re-
stricted to small values of ωδ. But in the present case

ωδ = ξnimp λ
2(�ω/µ) is very small, even if �ω ∼ µ, so the

restriction ωδ � 1 turns out to be of no practical impor-
tance here. Also, the results obtained in the present sec-
tion correspond to a potential with 〈U〉 = λµ ξ nimp 
= 0.
However, the comparison with the results of Section 3 is
possible with the rule given at the end of this section
for treating the case of a potential with non zero mean.
In this case the first term of expansion (23) modifies to
γ = (1/8)λ2nimp(�ω/µ)2(1 − λξnimp)−3. The correcting
term (1 − λξnimp)−3, due to the non zero average of the
potential, gives an undetectable modification of the result
(the relative difference with (41) is of order 0.18% in the
case of Fig. 5).

5 Discussion and conclusion

In this paper we have studied Anderson localization of
elementary excitations in a 1D BEC system. Emphasis
has been put on the determination of the localization
length which has been determined in Section 3 using the
“phase formalism” in the hydrodynamical approach (valid
for �ω � µ) and in Section 4, using a transfer matrix ap-
proach valid in the whole energy domain in the 1D mean
field regime (provided nimpξ � 1). Results from the two
approaches match within the appropriate limit. The hy-
drodynamic approach has the advantage of being able to
deal with a large range of linear densities, ranging from the
low density Tonks-Girardeau regime to the high density
transverse Thomas-Fermi regime. In particular the puz-
zling absence of localization at low energy in the Tonks-
Girardeau limit deserves further studies.

Our findings can be tested in realistic experimental
setups. Up to now, 3 experiments, lead at Firenze, Or-
say and Hannover, have been done which all use similar
configurations [15–17]. Each of these experiments involves
an elongated cigar shaped condensate in a magnetic trap
with an optical speckle pattern creating the disordered
potential [39]. The experimental random potential has a
non zero mean value, and the experiments are done in
the transverse Thomas-Fermi regime. We can thus study
localization in this configuration using (for excitations of
energy small compared to the chemical potential µ) the
above hydrodynamical approach of Section 3 adapted as
explained at the end of this section (replacing in all the
formulas µ by µ′

1 = µ/2 − 〈U〉, c′1 = (µ′
1/m)1/2, etc.).

One writes U(x) = 〈U〉 + U1(x). The auto-correlation
〈U1(x)U1(0)〉 has a typical range rc which is in all the
cases much larger than the healing length ξ: rc = 20µm
and ξ = 0.35 µm in the Firenze experiment; rc = 5.2 µm
and ξ = 0.16 µm in the Orsay experiment [40]; rc ≈ 7 µm
and ξ = 0.3 µm for N = 8 × 104 atoms at Hannover.
The condition (9) is fulfilled provided the pulsation ω of
the excitations is much lower than 2πc′1/rc (which, for in-
stance is equal to 2π × 340 Hz for 〈U〉/µ = 0.2 in the
Orsay experiment). In this regime, the potential can be
approximated by a white noise with a coefficient D and a
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correlation radius rc defined by
(

�
2

m

)2

D =
∫

R

〈U1(x)U1(0)〉dx = 〈U〉2 rc. (42)

Following the procedure explained in Section 3 this
leads to

Lloc =
ξ2

rc

(
µ

〈U〉

)2 ( µ
�ω

)2
(

1 − 2 〈U〉
µ

)3

. (43)

The experimental configuration which is closer to the one
considered in the present paper is the one of the Firenze
group [15] which has studied elementary excitations of an
elongated condensate in presence of a speckle pattern. The
discrete excitation modes in elongated systems are sim-
ilar to the continuous ones of infinite systems we have
described in the present article only in the case of high
quantum numbers (see, e.g., Ref. [20], Chap. 12). Unfor-
tunately, only the low lying dipole and quadrupole modes
have been studied in reference [15]. We nonetheless discuss
this experiment using our results, keeping in mind that we
can only provide rough orders of magnitude.

The data of the Firenze group are presented in a way
more easily analyzed within the model of random delta
peaks of Section 4. However, in the regime where equa-
tion (43) is valid, all models are expected to yield the same
result, as argued in Section 3 and verified in Section 4. The
only relevant parameter being the parameterD, or equiva-
lently rc [which is related to D by (42)]. Within the model
of random δ-peaks one has 〈U〉 = λµ ξ nimp and D =
nimp(λ/ξ)2 yielding rc = n−1

imp = 20 µm [15]. The chemi-
cal potential in the Firenze experiment is µ = 1 kHz and
the excitations considered are the dipole (ν1 = 8.74 Hz)
and quadrupole (ν2 = 13.8 Hz). For a disorder such
that 〈U〉/µ = 0.1 (which is typical in this experiment)
the dipole excitation corresponds to a localization length
L1

loc = 4.1 mm, whereas for the quadrupole one gets
L2

loc = 1.6 mm (L2
loc = (2/5)L1

loc since ν2/ν1 =
√

5/2).
We also note that higher excited modes having frequency
νn = (ν1/2)

√
n(n+ 3) [41,30] have lower localization

lengths: Ln
loc = (4/[n(n+ 3)])L1

loc. L
n
loc becomes compa-

rable with the the typical axial size of the condensate
(110 µm) for n ∼ 10 [42].

A precise plot of the oscillations of a dipole mode
is presented in reference [15] in the case 〈U〉/µ = 0.06
which corresponds to a limit we can address using equa-
tion (43) [43]. An experimental estimate of the value of the
localization length can be obtained by fitting the experi-
mental data with a sinusoidal oscillation at frequency ν1
with a damping exp{−2X(t)/Lexp

loc }, where X(t) = 4∆ν1t
is the distance traveled by the dipole mode for an oscil-
lation of maximal amplitude ∆. From the data presented
in reference [15] we obtain Lexp

loc � 1.7 mm. This does not
agree with the value L1

loc = 15 mm obtained from equa-
tion (43) in the case 〈U〉/µ = 0.06, but we recall that we
do not expect the dipole mode to be equivalent to an exci-
tation of an infinite system. Thus, the damping observed
in the Firenze experiment [15] cannot be accounted for
by a model of infinitely long condensate with no axial

trapping. Quantitative theoretical description of this ex-
periment should take the axial trapping fully into account.
We nonetheless hope that the experimental study of higher
excited modes could directly confirm the result (43).

It is also interesting to discuss the expected localiza-
tion length in the Orsay experiment [16], where the prop-
erties of the random potential are well characterized. In
this experiment, the potential is Poisson distributed with
a mean value 〈U〉 which is a fraction of the chemical poten-
tial (µ = 4.47 kHz). Taking 〈U〉/µ = 0.2, and for instance
ω = ωz = 2π×6.7 Hz (corresponding to the dipole excita-
tion) one obtains Lloc = 11.8 mm. Besides, if one in able
to generate excitations with ω � 6× ωz, one still remains
in the hydrodynamical regime and the above value of Lloc

is decreased by a factor 36, becoming of the order of the
axial size of the condensate (300 µm in the Orsay experi-
ment [16]). We recall that the present approach does not
strictly apply for low lying excitations of a trapped con-
densate, but it is nevertheless interesting to get an esti-
mation of the typical length scale for observing Anderson
localization experimentally.

We note that the Firenze [44], Orsay [16] and
Hannover [17] groups observed a saturation of the ex-
pansion of a condensate in a disordered potential. In the
3 experiments this phenomenon has been interpreted (see
also [45,46]) as being due to the trapping of the wings of
the condensate by the large peaks of the speckle potential,
with no relation to Anderson localization. We hope that
in the near future, new experiments will be able to di-
rectly address Anderson localization of elementary excita-
tions in transversely confined Bose-Einstein condensates,
in configurations corresponding to the scenario analyzed
in the present work. In this case, our study indicates that
localization is more easily achieved for excitations of en-
ergy of order µ (see Fig. 1) created for instance through
Bragg spectroscopy [47]. This range of energy is out of the
hydrodynamical regime presented in Section 3, but the ap-
proach of Section 4 allows to get a quantitative estimate
of Lloc in this case (for the 1D mean field regime).
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supported by the Ministère de la Recherche (Grant ACI
Nanoscience 201), by the ANR (grants ANR–05–Nano–008–02
and ANR–NT05–2–42103) and by the IFRAF Institute. Labo-
ratoire de Physique Théorique et Modèles Statistiques is Unité
Mixte de Recherche de l’Université Paris XI et du CNRS, UMR
8626.

Appendix A: Density of state
within the phase formalism

In this appendix we briefly demonstrate equation (25) fol-
lowing a similar demonstration in reference [11]. We first
demonstrate that the phase θ defined in (13) is a mono-
tonic function of ω. This can be shown by introducing the
auxiliary variable y = −c0z/ω. Expressing (17) in terms of
the variable y, differentiating with respect to ω and then
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integrating the resulting equation one gets

∂y

∂ω
=

2ω
c20

∫ x

0

dx′ y2(x′) exp
{

2ω2

c20

∫ x

x′
y(x′′)dx′′

}
> 0.

(44)
Thus z = −ωy/c0 is a decreasing function of ω, and θ is an
increasing function of ω (since θ is a continuous function
and ∂z/∂θ = −1 − z2). θ verifies the equation

c0
ω

dθ
dx

= 1 + sin2 θ
U(x)
µ

. (45)

The fact that θ is an increasing function of ω immedi-
ately implies that the number of eigenmodes [solutions
of (8) or equivalently of (12)] with pulsation between 0
and ω, verifying the boundary condition cot θ(0) = θ0 and
cot θ(L) = θL coincides with the number of pulsations
ω′ ∈ [0, ω] for which the accumulated phase θ(ω′, L) as
determined by (45) with the initial condition θ(ω′, 0) = θ0
verifies θ(ω′, L) = θL +mπ. This number is equal to

E

[
θ(ω,L) − θ(0, L)

π

]
= E

[
θ(ω,L) − θ0

π

]
, (46)

where E(x) denotes the integer part of x. Passing to the
limit L → ∞ and allowing for the fact the number of
states is a self averaging quantity one obtains

N(ω) = lim
L→∞

〈θ(ω,L)〉
π L

. (47)

But the number (46) is also seen to be the number of
times where the variable θ equals zero modulo π in the in-
terval [0, L]. This stems from the fact that θ(x) can change
interval [nπ, (n + 1)π] only toward a higher interval and
cannot go backward to a lower interval, because, as seen
from (45), dθ/dx|θ=nπ = ω/c0 > 0. One may thus write

N(ω) = lim
L→∞

ω

c0 L

∫ L

0

dx Qred(0;x), (48)

where

Qred(θ;x) =
∑

n∈Z

〈
δ
(
θ(x) − nπ − θ

)〉
, (49)

is the probability density for the reduced phase. Owing to
the fact that Qred reaches a stationary (i.e., x indepen-
dent) distribution Qred

st (θ), (48) yields

N(ω) =
ω

c0
Qred

st (0) =
ω

c0
lim

z→∞(1 + z2)Pst(z) , (50)

where the last equality follows from the relation z = cot θ.
The explicit expression (20) of Pst evaluated at large z
then yields the desired result (25).

Appendix B: Transmission through a single
delta peak

In this appendix we determine the transmission and re-
flexion amplitude of an elementary excitation of energy

�ω incident from the left on a delta-like impurity located
at x = 0. These coefficients have already been obtained by
Kagan et al. in the case of a barrier of finite width [48]. In
the present case the impurity interacts with the atoms
forming the condensate via a potential λµ ξ δ(x) with
λ > 0. The condensate is deformed near the impurity and
the order parameter reads

ψ(x) = tanh(|x/ξ| + a) , with

a =
1
2

sinh−1

(
2
λ

)
. (51)

This form of ψ(x) corresponds to two portions of black
solitons matched together at x = 0 in order to satisfy the
condition ξ [ψ′(0+)−ψ′(0−)] = 2λψ(0). Far from the im-
purity (at x→ ±∞), the background is not perturbed and
an elementary excitation of energy �ω has a wave vector
q such that ω = c0q(1 + q2ξ2/4)1/2, and is described by
(u(x), v(x)) = exp(iqx)(uω , vω) where — by equation (4)
— the constants uω and vω are related by

(
ξ2q2

2
+ 1 − �ω

µ

)
uω + vω = 0 . (52)

The background is deformed near the impurity [as de-
scribed by (51)], and in this region the form of the wave
function of the elementary excitation is affected in a non
trivial manner. However, one still has an analytical de-
scription of the excitations around the stationary pro-
file (51) because the expression of the excitation around
a soliton is known (it is given by the squared Jost func-
tions of the inverse problem [49], see also Appendix A of
reference [50]). Thus one can write the appropriate in-
coming, transmitted and reflected modes of the problem.
It is important however to realize that the system has
also evanescent modes localized around the impurity [48].
More specifically, the scattering process of an excitation
of energy �ω incident from −∞ is described by

Ξ(−)(x) = Ainc Ξ
∗
q (−x) +Aref Ξq(−x) +A(−)

eva Ξip(−x),
(53)

when x < 0, and

Ξ(+)(x) = Atra Ξq(x) +A(+)
eva Ξip(x), (54)

when x > 0. The indexes “inc”, “ref”, “tra” and “eva”
correspond respectively to incident, reflected, transmitted
and evanescent channels. The expression of Ξk(x) (k = q
or ip) in (53) and (54) is

Ξk(x) = eikx

⎛

⎜
⎝

[
kξ
2 + ω

c0k + i tanh(x
ξ + a)

]2

[
kξ
2 − ω

c0k + i tanh(x
ξ + a)

]2

⎞

⎟
⎠ , (55)

and the quantities q and p are wave vectors related to ω by

q ξ =
√

2
{√

(�ω/µ)2 + 1 − 1
}1/2

,

p ξ =
√

2
{√

(�ω/µ)2 + 1 + 1
}1/2

. (56)



396 The European Physical Journal D

The wave functions defined in equations (53) and (54) are
the most general solutions of (4) corresponding to an el-
ementary excitation of energy �ω incoming from the left
and scattering on a potential U(x) = λ ξ µ δ(x). In partic-
ular, the incident, transmitted and reflected components
of (53, 54) all verify (52) far from the impurity. The as-
sumption nimpξ � 1 made in Section 4 ensures that the
evanescent mode Ξip does not reach the nearest impu-
rity [51]. This is the reason why the scattering on poten-
tial (32) can be described via a transfer matrix approach
using only 2 × 2 matrices.

The matching at x = 0 corresponds to Ξ(−)(0) =
Ξ(+)(0) and dΞ(+)/dx

∣∣
0
− dΞ(−)/dx

∣∣
0

= 2λ ξ−1Ξ(0).
This yields a system of 4 linear equations determining the
coefficients Aref , Atra, A

(−)
eva and A

(+)
eva in terms of Ainc. A

tedious but straightforward computation yields

tλ =
Atra

Ainc
=

1
2

[
2 + iqξ tanh(2a)
−2 + iqξ tanh(2a)

+
∆∗

∆

]
, (57)

and

rλ =
Aref

Ainc
=

1
2

[
2 + iqξ tanh(2a)
−2 + iqξ tanh(2a)

− ∆∗

∆

]
, (58)

where

∆ = 4
(

�ω

µ
+ 2 i tanh2 a

) √(
�ω

µ

)2

+ 1

+ 2 ξ(p+ iq) tanh a
[
2�ω

µ
+ i(1 + tanh2 a)

]
. (59)

The transmission probability Tλ = |tλ|2 has the asymp-
totic form Tλ � 1 − λ2µ/(2�ω) when ω → ∞, and in the
opposite small energy limit (�ω � µ) one has

Tλ � 1 −
(

�ω

2µ

)2 [
1 − 2

tanh a
+ tanh(2a)

]2

�
λ→0

1 −
(
λ �ω

2µ

)2

. (60)

A typical behavior of Tλ as a function of ω is plotted
in Figure 6. The transmission probability is 1 at small
frequency. This anomalous behavior of the transmission at
small energy has already been noticed in reference [48] in
the case of a barrier of finite extend. It is also in agreement
with the findings of reference [50] where a dark soliton
with velocity vsol → c0 (and thus reaching the limit where
it becomes a mere density perturbation, i.e., a phonon,
which is an elementary excitation with q → 0) was shown
to pass over an obstacle without radiating energy, i.e.,
without reflection.

The exact formula for Tλ [from (57)] is compared on
Figure 6 with an approximation valid for all ω when
λ� 1:

Tλ � 1 − (λ ξ q/2)2

(�ω/µ)2 + 1
. (61)

It is seen in the figure that this approximation is rea-
sonably accurate already when λ = 1. More precisely,
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     h ω / µ
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Fig. 6. Transmission probability Tλ across a potential U(x) =
λµ ξ δ(x) as a function of ω (in rescaled units). The solid line is
the exact result (57) in the cases λ = 1 and λ = 2. The dashed
line are the corresponding small λ approximations (61).

for λ = 1, the relative error due to the use of equa-
tion (61) is lower than 3% (the error is maximum around
�ω � 0.7µ); for λ = 0.5, this errors is lower than 0.5%.
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24. J. Fortágh, H. Ott, S. Kraft, A. Günther, C. Zimmermann,
Phys. Rev. A 66, 041604(R) (2002); A.E. Leanhardt et al.,
Phys. Rev. Lett. 89, 040401 (2002); J. Estève et al., Phys.
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